-
课程介绍
课程大纲
学习资料
学员评价
-
- 课程目标
- 处理数据集;金融数据标准化;K近邻点分类模型的选择和应用;用K近邻点模型进行预测;K近邻点模型的评估
- 适用人群
- 学习金融学、数据、计算机的高校生、在职的基金经理、投研总监、专业投资者、金融分析师、量化分析
- 课程简介
讲师介绍
北京大数据协会研究员,量化金融中心研究员,首都经济贸易大学教授
学院服务
关注公众号领取
免费VIP会员
添加学院管家微信进入
学习社群
课程介绍
课程大纲
学习资料
学员评价
会员免费学习
课程评价
发表客观评价,上限可得35学分(会员可得70学分)
收入预测案例与K近邻点分类算法
该课程已有 人评价
匿名
案例数据集来源于UCI网站。案例是基于美国统计局的人口普查资料数据。案例的目标是希望利用这些数据来预测年收入大于5万美元的家庭。该数据集内包含48842条记录和14个特征变量,包括1个分类变量。变量包括类别型,字母型,和数值型。
K近邻点分类算法是机器学习领域中的一个基础且非常重要的算法。K近邻点算法是一种基于实例的算法,就是把所有训练样本储存起来(形成记忆)。当我们对一个新纪录进行预测时,就将新记录与记忆中的记录进行比较,找到最接近(或最类似)新记录的K条记录,然后通过分类规则来确定该新记录所属的类别。Python的优势在于开源,基于Python的各类机器学习算法非常丰富而且方便使用。我们将以美国统计局的人口普查资料数据案例数据集为一个点的同时,讨论 K近邻点分类算法的原理,及其在Python中的算法,并用他们来解决案例的预测分类。
本案例的特点是将家庭收入预测问题的解决方案与机器学习中的K近邻点分类算法进行结合,并利用Python设计一个自动分类的预测算法来对案例数据集进行学习并辅助我们进行决策。这三者的结合就是智能金融在金融行业的一种经典应用。
通过案例学习后,如果学生能够独立完成作业,学生将能达到以下预期目标:
能够处理一个金融问题的数据集;
金融数据的标准化处理;
K近邻点分类模型的选择和应用;
用K近邻点分类模型进行预测;
对K近邻点模型进行评估。
学生将获得本案例的Python源代码。
在线
客服
在线
客服
下载Android客户端
下载iphone 客户端
返回
顶部
2019年香港最准六肖王,六肖王中特,六肖中特期期准 王中王
蓝月亮精选料免费大全|
蓝月亮246精选资料大全|
香港正马会资枓|
香港最准一肖中特公开选料1|
白小姐精选三肖期期准|
六合宝典|
四肖选一肖期期准香港|
2020六开彩开奖现场直播 开奖结果|
王中王资料大全枓大全|
管家婆王中王鉄算盘开奖结果|
白小姐四肖选一肖期准|
118图库|
香港蓝月亮精选免费资料大全|
王中王中特免费公开资料选料|
香港蓝月亮精选免费资料大全|
刘伯温全年料四肖选一肖|
三肖选一肖期期准|
管家婆免费版|
246好彩天天免费资枓大全|
六合宝典|
二四六天天好彩免费资料|
三肖选一肖期期准|
管家婆期期准免费资料精选|
白小姐四肖选一肖期准|
蓝月亮246精选资料大全|
2020开奖结果|
天齐网|
白小姐四肖必选一肖|
四肖选一肖一码期期准|
白小姐四肖选一肖期准|
四肖选一肖一码期期准|
天齐网|
管家婆期期准免费资料精选|
香港最准一肖中特公开选料1|
香港马会资枓大全2020|
香港正马会资枓|
六盒宝典官方正版下载安装2020|
2020年马会全年资料|
二四六精选资料大全|
白小姐四肖必选一肖|
二四六精选资料大全|
5分
1
非常糟
2
很差
3
一般
4
很好
5
非常好